Explicando al chico que lanzó una botella de champán y la convirtió en un cohete

$config[ads_kvadrat] not found

Notas al Chico que me cambió la Vida - Cori García

Notas al Chico que me cambió la Vida - Cori García
Anonim

¿No le ha pasado esto a todo el mundo? Estás en la boda de un amigo y es tu trabajo abrir la botella de celebración de Champagne. Eso está muy bien, te dices a ti mismo, pero simplemente descorcharlo es muy pasado. En su lugar, agarras la botella por el cuello y la arrojas contra una pared. ¿Qué, eso no te ha pasado? Pues le pasó a este chico:

Justo en la cadera, ¿verdad? Tal vez en las llaves del coche, o el iPhone? Eso tiene que doler.

Pero ¿cuánto le dolió? Para obtener ayuda con esa pregunta, me dirigí al Dr. Gabriel Xu, físico de plasma en el Centro de Investigación de Propulsión de la Universidad de Alabama en Huntsville. ¿Por qué le pedí a un científico espacial que me ayudara? Inverso ¿deberes? Solo digamos que un científico de cohetes es el hombre adecuado al que recurrir cuando su champán pasa de ser combustible para fiestas a combustible para botellas.

En el instante en que la botella golpea la pared, se convierte en un cohete.Esto puede parecer grandioso, pero es completamente correcto, si no pedante. Como lo explica la NASA:

"Los cohetes funcionan por una regla científica llamada la tercera ley del movimiento de Newton. El científico inglés Sir Isaac Newton enumeró tres leyes del movimiento. Lo hizo hace más de 300 años. Su tercera ley dice que por cada acción, hay una reacción igual y opuesta. El cohete empuja sobre su escape. El escape empuja el cohete, también. El cohete empuja el escape hacia atrás. El escape hace que el cohete avance.

En nuestro caso, una mezcla de dióxido de carbono y valor líquido sale de la botella, empujando la botella hacia adelante. La fuerza sobre la botella y la fuerza sobre el propelente componen un "par de acción-reacción", en el lenguaje físico. Y a la manera típica de la física, estamos descuidando la gravedad y la resistencia del aire de aquí en adelante.

Las matemáticas involucradas son solo un poco más sofisticadas que esto:

Los cohetes obedecen a la ecuación de cohetes, que se parece a esto.

Dónde F representa la fuerza, v representa la velocidad, y dm / dt representa el cambio en la masa a lo largo del tiempo. La ecuación simplemente dice que la fuerza en el cohete es igual al cambio en la masa por la velocidad del escape, en nuestro caso, el dióxido de carbono.

Aquí es donde me quedé atascado. No fue inmediatamente obvio para mí cómo calcular v y dm / dt. Pero el Dr. Xu estaba en el dinero. Calcularemos v con la Ecuación de Bernoulli, que simplemente expresa la ley de conservación de la energía para fluidos fluidos. Además, uno de los usos comunes de la Ecuación de Bernoulli es explicar cómo funcionan los perfiles aerodinámicos, lo cual tiene algunos problemas.

La ecuación de Bernoulli se ve así, donde los términos en el lado izquierdo se refieren al dióxido de carbono en la botella, y los términos en el lado derecho se refieren a la salsa alcohólica para cohetes que sale de la botella:

Esto parece desagradable, pero en realidad es bastante simple. El primer término en ambos lados es solo la presión. El segundo término es la energía cinética del fluido. En el lado izquierdo, dejaremos que esto sea cero ya que el líquido en la botella no se está moviendo en relación con la botella. Esto nos permite resolver la velocidad de salida, v, de nuestro champagne.

Con v también podemos calcular dm / dt. Todo lo que necesitamos saber es cuánta masa está pasando un punto en la apertura de la botella en un momento dado. Eso es solo la densidad de los tiempos de gas en el área de la sección transversal de los tiempos de cuello de botella v. Presto.

Si hacemos algunas suposiciones, podemos calcular F No hay problema. Aquí están los números que sugirió el Dr. Xu. El Champagne embotellado está bajo seis atmósferas de presión, mientras que la atmósfera está (como era de esperar) bajo una atmósfera. La densidad del champán es cercana a la del agua: 1.000 kilogramos por metro cúbico. Y el cuello de la botella es de 25 milímetros de diámetro.

"Al usar estos números asumidos, obtengo una fuerza de empuje de 15.6 Newtons", escribió Xu en un correo electrónico. Si recuerdas la física de la escuela secundaria, sabes que un Newton es la fuerza necesaria para acelerar 1 kilogramo de masa a 1 metro por segundo por segundo. Pero, Xu dice: "Esa no es una cantidad realmente útil para pensar. En cambio, podemos ver el impulso que lleva la botella en el momento del impacto ".

El impulso es una cantidad agradable y concreta para nuestros propósitos, ya que captura el "oomph", y el "ouch", de un impacto mejor que la fuerza. Pero a diferencia de la fuerza, el impulso no tiene una unidad convenientemente nombrada; se mide en kilogramos por segundo o kgm / s. Puedes ver en las unidades que el impulso solo es igual a la velocidad de la masa.

Más números del Dr. Xu: "Una botella de vino de 750 mililitros es de aproximadamente 0.9 kilogramos, y 750 mililitros de agua / Champagne es de 0.75 kilogramos". De esto podemos implementar la segunda ley de Newton. F = ma, para calcular la aceleración, que resulta ser de 9,45 metros por segundo por segundo.

"En el video parece que la botella golpeó al tipo ~ 0.5 segundos después de golpear el objeto y convertirse en un cohete", escribió Xu. Suponiendo que la velocidad inicial es cero, “luego de 0,5 segundos la botella golpea con una velocidad de 4.73 m / s. Digamos que la botella pierde algo de líquido en ese tiempo y solo le quedan 1.5 kilogramos. El impulso en el impacto es, por lo tanto, de … 7,1 kgm / s ".

Bueno, eso está muy bien, dices, pero ¿cómo le doy sentido a eso? No te preocupes, el Dr. Xu te apoya.

"Para comparación", escribió, "una pelota de béisbol tiene una masa de 0.145 kilogramos, y una bola rápida de 90 mph es de ~ 40 m / s. Entonces, una pelota de béisbol de 90 mph golpearía con un impulso de 5.8 kgm / s. Así, la botella golpeó al tipo como una bola rápida de 110 mph ”.

Eso tiene que doler.

Las citas se han editado para reemplazar los nombres de unidades abreviados con sus versiones completas

$config[ads_kvadrat] not found